
Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 1/35

The Craft of API Design

Clifford Wolf
ROCK Linux - http://www.rocklinux.org/

Csync2 - http://oss.linbit.com/csync2/

STFL - http://www.clifford.at/stfl/

SPL - http://www.clifford.at/spl/

http://www.clifford.at
http://www.clifford.at/
http://www.rocklinux.org/
http://oss.linbit.com/csync2/
http://www.clifford.at/stfl/
http://www.clifford.at/spl/

Introduction

● What are APIs? (1/2)

● What are APIs? (2/2)

● Why are APIs so important?
● Why is API-Design so

important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 2/35

Introduction

http://www.clifford.at
http://www.clifford.at/

Introduction

● What are APIs? (1/2)

● What are APIs? (2/2)

● Why are APIs so important?
● Why is API-Design so

important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 3/35

What are APIs? (1/2)

■ APIs are the (programatical) face of any piece of
programming work.

■ This is not limited to libraries intended for a broad use.

■ It also covers the internal APIs found in every non-trivial
program.

http://www.clifford.at
http://www.clifford.at/

Introduction

● What are APIs? (1/2)

● What are APIs? (2/2)

● Why are APIs so important?
● Why is API-Design so

important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 4/35

What are APIs? (2/2)

■ APIs can be seen as extensions to the functionality of a
programming language.

■ A programming language comes with a very limited built-in
vocabulary (set of functions and keywords).

■ Every program module extends this vocabulary using its API.

http://www.clifford.at
http://www.clifford.at/

Introduction

● What are APIs? (1/2)

● What are APIs? (2/2)

● Why are APIs so important?
● Why is API-Design so

important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 5/35

Why are APIs so important?

■ Today’s programming projects tend to become huge pretty
fast.

■ It is hard to fully understand a huge program.
■ So projects are broken up into modules with the APIs

connecting them.

■ With this seperation, it enables the programmer to focus on
one module without the need of knowing the rest of the
project inside out.

■ This can’t work out unless the APIs are stable and cleanly
seperating the modules from each other.

http://www.clifford.at
http://www.clifford.at/

Introduction

● What are APIs? (1/2)

● What are APIs? (2/2)

● Why are APIs so important?
● Why is API-Design so

important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 6/35

Why is API-Design so important?

■ Projects tend to “grow” with the APIs happening instead of
beeing designed.

■ A well designed API enables the programmer to change a
module’s internals without the need for changing the API or
other modules.

■ So if the API is good, everything else can also be improved
later in the process.

■ But changing an API is always complicated, especially if the
API has grown already a big user base.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

● Frameworks

● Standard APIs (1/2)

● Standard APIs (2/2)

● Toolchain Libraries

● Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 7/35

APIs Everywhere

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

● Frameworks

● Standard APIs (1/2)

● Standard APIs (2/2)

● Toolchain Libraries

● Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 8/35

Frameworks

■ Frameworks are getting more important than the
programming languages they are written for and in.

■ Example given:
◆ Ruby on Rails

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

● Frameworks

● Standard APIs (1/2)

● Standard APIs (2/2)

● Toolchain Libraries

● Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 9/35

Standard APIs (1/2)

■ Some APIs are part of standards and independend of
implementations.

■ Example given:
◆ Standard C Library
◆ The POSIX system call layer
◆ The Verilog PLI layer
◆ The MPI API

■ A thing to ponder:
Usually it takes a few hours to learn a new language,
learning the standard libraries API is the hard part.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

● Frameworks

● Standard APIs (1/2)

● Standard APIs (2/2)

● Toolchain Libraries

● Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 10/35

Standard APIs (2/2)

■ Some APIs are even independend of programming
languages.

■ Example given:
◆ The DOM API

■ Changing a standard API once it is published and in use is
close to impossible.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

● Frameworks

● Standard APIs (1/2)

● Standard APIs (2/2)

● Toolchain Libraries

● Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 11/35

Toolchain Libraries

■ Most of today’s applications don’t implement a single
non-trivial algorithm.

■ Instead ready-to-use libraries are used.

■ Example given:
◆ APIs to sort functions vs. sorting algorithms -

Which one is more important for the daily work of an
application programmer?

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

● Frameworks

● Standard APIs (1/2)

● Standard APIs (2/2)

● Toolchain Libraries

● Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 12/35

Program Modules

■ Today’s software projects are usually split up in small
modules.

■ This is pimarily done to fight complexity.

■ The whole effort is useless if the APIs between this modules
aren’t well designed.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 13/35

Some Guidelines

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 14/35

Introduction (1/2)

■ I will present some Guidelines for API design.

■ None of them is an absolute rule.

■ But I believe they bring up some questions everyone
designing an API should worry about.

■ Feedback is always welcome.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 15/35

Introduction (2/2)

■ The following rules and things to ponder might be useful:
◆ For designing new APIs
◆ For cleaning up existing APIs
◆ For judging others APIs

■ Every minute cut in API design will hit you hard later.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 16/35

Hard to use wrong (1/2)

■ An API must be hard to use wrong.

■ This is different from easy to use right.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 17/35

Hard to use wrong (2/2)

Good example:

char * get_current_dir_name(void);

Returns a malloced string containing the absolute pathname of
the current working directory. (GNU extension)

Bad example:

char * strncpy(char * dest, const char * src, size_t n);

If there is no null byte among the first n bytes of src, the result
will not be null-terminated.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 18/35

Be self-descriptive (1/2)

■ The name should indicate what it does.

■ Use names for function parameters when the language
provides them.

■ The API should pass the "Telephone test".

Good example:

egrep --recursive --exclude-dir .svn Copyright .

Bad example:

char * exclude_dir_vect[] = { ".svn", NULL };
fictional_egrep_function(0, 0, 1, 0, 0, NULL, NULL,

exclude_dir_vect, NULL, NULL, "Copyright", ".");

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 19/35

Be self-descriptive (2/2)

Good example:

if (strstr(haystack, "needle"))
printf("Found a needle!\n");

Bad example:

print "Found a needle!\n" if haystack =˜ /needle/;

Good example:

int on_exit(void (* function)(int , void *), void * arg);

Bad example:

sighandler_t signal(int signum, sighandler_t handler);

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 20/35

Hide something

■ An API must hide something.

■ The inner workings of a module must not dictate the API.

Good and bad example:

void qsort(void * base, size_t nmemb, size_t size,
int(* compar)(const void * , const void *));

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 21/35

Don’t overoptimize

■ Allow for changes in the algorithm.
■ This is where optimization happens!

Common failure: Trading a ’fast API’ for less flexibility.

Bad Example:

void qsort(void * base, size_t nmemb, size_t size,
int(* compar)(const void * , const void *));

(A user context pointer should be passed thru to compare.)

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 22/35

Support User Contexts

■ Always pass a void user context pointer to callback functions.
■ Global variables should never be used for this!

■ Always configure a library using some kind of context object.
■ Global variables should never be used for this!

■ Bad examples: qsort(), LibXML2
■ Good examples: epool, PCRE

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 23/35

Be Pragmatic

■ Each module/function should do one thing well.

Bad examples:
■ Using select() as nanosleep/usleep replacement. (4.2BSD)

Good examples:
■ BSD socket API
■ Most POSIX System Calls

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 24/35

Be Consistent

■ Stick to a metaphor for API names.

■ Stick to a lexical naming scheme.

■ Don’t mix plural and singular in names.

■ Always use the same name for the same thing.

■ Avoid off-by-one confusions.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 25/35

Be Restrictive

■ Make a clear distinction between internal and external APIs.

■ Use accessor functions to access data structures.

■ Don’t export struct internals when the user should only pass
the pointer.

■ Everything that does not affect the API can be changed
easily!

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 26/35

Be Selective

■ Limit the API to an easy to overview set of functions, if
possible.

■ Good example: PCRE API

■ Provide an easy-to-use API for the most common use case,
if feasible.

■ Good example: CURL API

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 27/35

Free everything

■ Provide done() , destroy() or cleanup() functions.

■ Make sure that it is possible to free every resource allocated
by your library.

■ Use memory debuggers like valgrind to verify your
implementation.

Bad example:
The QT library

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 28/35

Two-level-documentation

■ Provide at least two levels of documentation:
◆ The big picture / tutorial
◆ Function, Class, etc. reference

■ Tools like doxygen can only help with the latter one.

■ Always assume that the reader of your documentation starts
with zero knowlegde of your API.

■ Always start with describing the bigger context.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 29/35

Document the data layout

■ Data structures etc. are almost ever under-documented.

■ But often understanding the data structures is the key
element for understanding an API.

■ In good programs the data structure tends to dictate the
imperative part of the program, not the other way around.

Bad example:
man pages

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 30/35

Stick to a freeing-paradigm

■ Always be clear who is supposed to free what resource.

■ Make a decision for one paradigm and stick to it.

■ Freeing resources is the boring part.

■ Nevertheless it’s one of the most critical aspects in API
design.

(Know your contracts!)

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 31/35

Program defensively

■ Be liberal with what you acceppt.

■ Be conservative with what you pass to the outside world.

■ Check for the impossible case.

■ Fail early when you have to fail.

■ Leave all checks in the production code.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

● Introduction (1/2)

● Introduction (2/2)

● Hard to use wrong (1/2)

● Hard to use wrong (2/2)

● Be self-descriptive (1/2)

● Be self-descriptive (2/2)

● Hide something

● Don’t overoptimize

● Support User Contexts

● Be Pragmatic

● Be Consistent

● Be Restrictive

● Be Selective

● Free everything

● Two-level-documentation

● Document the data layout

● Stick to a freeing-paradigm

● Program defensively

● Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 32/35

Support many languages

■ Support as many programming languages as possible.

■ Use the swig library to export a C/C++ API to the scripting
world.

■ Provide command line tools to make the API’s functionality
accessible from an ordinary UNIX shell.

■ Provide a thin C-wrapper for C++ libraries.

■ Use MinGW or Cygwin to create a Win32 port of your library.

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

References

● Books

● This Presentation

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 33/35

References

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

References

● Books

● This Presentation

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 34/35

Books

■ The Pragmatic Programmer
Hunt and Thomas (ISBN-13: 978-0-201-61622-4)

■ The Mythical Man-Month
Brooks (ISBN-13: 978-0-201-83595-3)

■ The Elements of Programming Style
Kerninghan and Plauger (ISBN: 0-07-034207-5)

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

References

● Books

● This Presentation

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 35/35

This Presentation

■ Clifford Wolf
http://www.clifford.at/

■ More Presentations
http://www.clifford.at/papers/

■ This Presentation
http://www.clifford.at/papers/2008/apidesign/

http://www.clifford.at
http://www.clifford.at/

	Introduction
	What are APIs? (1/2)
	What are APIs? (2/2)
	Why are APIs so important?
	Why is API-Design so important?

	APIs Everywhere
	Frameworks
	Standard APIs (1/2)
	Standard APIs (2/2)
	Toolchain Libraries
	Program Modules

	Some Guidelines
	Introduction (1/2)
	Introduction (2/2)
	Hard to use wrong (1/2)
	Hard to use wrong (2/2)
	Be self-descriptive (1/2)
	Be self-descriptive (2/2)
	Hide something
	Don't overoptimize
	Support User Contexts
	Be Pragmatic
	Be Consistent
	Be Restrictive
	Be Selective
	Free everything
	Two-level-documentation
	Document the data layout
	Stick to a freeing-paradigm
	Program defensively
	Support many languages

	References
	Books
	This Presentation

