Clifford Wolf, September 21, 2008

The Craft of APl Design

Clifford Wolf

ROCK Linux - http://www.rocklinux.org/
Csync2 - http://oss.linbit.com/csync2/
STFL - http://www.clifford.at/stfl/
SPL - http://www.clifford.at/spl/

http://www.clifford.at/ - p. 1/35

http://www.clifford.at
http://www.clifford.at/
http://www.rocklinux.org/
http://oss.linbit.com/csync2/
http://www.clifford.at/stfl/
http://www.clifford.at/spl/

Introduction

e What are APIs? (1/2)

e What are APIs? (2/2)

e Why are APIs so important?
e \Why is API-Design so
important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008

Introduction

http://www.clifford.at/ - p. 2/35

http://www.clifford.at
http://www.clifford.at/

What are APIs? (1/2)

= APIs are the (programatical) face of any piece of
.
e What are APIs? (2/2) programmlng WOrk.

e Why are APIs so important?
e Why is API-Design so
important?

R = This is not limited to libraries intended for a broad use.

Some Guidelines

References

= |t also covers the internal APIs found in every non-trivial
program.

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 3/35

http://www.clifford.at
http://www.clifford.at/

Introduction

e What are APIs? (1/2)

e What are APIs? (2/2)

e Why are APIs so important?
e Why is API-Design so
important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008

What are APIs? (2/2)

= APIs can be seen as extensions to the functionality of a
programming language.

= A programming language comes with a very limited built-in
vocabulary (set of functions and keywords).

= Every program module extends this vocabulary using its API.

http://www.clifford.at/ - p. 4/35

http://www.clifford.at
http://www.clifford.at/

Introduction

e What are APIs? (1/2)
e What are APIs? (2/2)
e Why are APIs so important?

e Why is API-Design so
important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008

Why are APIs so important?

= Today’s programming projects tend to become huge pretty
fast.

= |t is hard to fully understand a huge program.

= S0 projects are broken up into modules with the APIs
connecting them.

= With this seperation, it enables the programmer to focus on
one module without the need of knowing the rest of the
project inside out.

= This can’t work out unless the APIs are stable and cleanly
seperating the modules from each other.

http://www.clifford.at/ - p. 5/35

http://www.clifford.at
http://www.clifford.at/

Introduction

e What are APIs? (1/2)

e What are APIs? (2/2)
e Why are APIs so important?

e Why is API-Design so
important?

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008

Why is API-Design so important?

= Projects tend to “grow” with the APIs happening instead of
beeing designed.

= A well designed API enables the programmer to change a
module’s internals without the need for changing the API or
other modules.

= S0 Iif the APl Is good, everything else can also be improved
later in the process.

= But changing an API is always complicated, especially if the
APl has grown already a big user base.

http://www.clifford.at/ - p. 6/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

e Frameworks

e Standard APIs (1/2)
e Standard APlIs (2/2)
e Toolchain Libraries

g i APls Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 7/35

http://www.clifford.at
http://www.clifford.at/

Frameworks

inroduction = Frameworks are getting more important than the
programming languages they are written for and in.
e = Example given:

e Toolchain Libraries [] Ruby on Ra”S

e Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 8/35

http://www.clifford.at
http://www.clifford.at/

Standard APIs (1/2)

Inoducton = Some APIs are part of standards and independend of
Implementations.

iven:

otanar s " Example glven)

e Toolchain Libraries M Standard C lerary

e Program Modules

0 The POSIX system call layer
0 The Verilog PLI layer
0 The MPI API

Some Guidelines

References

= A thing to ponder:
Usually it takes a few hours to learn a new language,
learning the standard libraries API is the hard part.

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 9/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

e Frameworks

e Standard APls (1/2)
e Standard APls (2/2)
e Toolchain Libraries

e Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008

Standard APIs (2/2)

= Some APIs are even independend of programming
languages.

= Example given:
0 The DOM API

= Changing a standard API once it is published and in use is

close to impossible.

http://www.clifford.at/ - p. 10/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

e Frameworks

e Standard APls (1/2)
e Standard APls (2/2)

e Toolchain Libraries

e Program Modules

Some Guidelines

References

Clifford Wolf, September 21, 2008

Toolchain Libraries

= Most of today’s applications don’t implement a single
non-trivial algorithm.

= |nstead ready-to-use libraries are used.

= Example given:
0 APlIs to sort functions vs. sorting algorithms -

Which one is more important for the daily work of an

application programmer?

http://www.clifford.at/ - p. 11/35

http://www.clifford.at
http://www.clifford.at/

Program Modules

itroduction = Today'’s software projects are usually split up in small
modules.

e Frameworks

e Standard APls (1/2)
e Standard APls (2/2)
e Toolchain Libraries

ST = This is pimarily done to fight complexity.

Some Guidelines

References m The whole effort is useless if the APIs between this modules
aren’t well designed.

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 12/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)

e Introduction (2/2)

e Hard to use wrong (1/2) Some Guidelines
e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

Be self-descriptive (2/2)

Hide something

e Don't overoptimize

Support User Contexts

e Be Pragmatic
e Be Consistent

Be Restrictive

Be Selective

Free everything
Two-level-documentation

e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 13/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Introduction (1/2)

| will present some Guidelines for API design.

None of them is an absolute rule.

But | believe they bring up some questions everyone
designing an API should worry about.

Feedback is always welcome.

http://www.clifford.at/ - p. 14/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Introduction (2/2)

= The following rules and things to ponder might be useful:

0 For designing new APIs
0 For cleaning up existing APIs
0 For judging others APIs

= Every minute cut in API design will hit you hard later.

http://www.clifford.at/ - p. 15/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)

e Introduction (2/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Hard to use wrong (1/2)

= An APl must be hard to use wrong.

= This is different from easy to use right.

http://www.clifford.at/ - p. 16/35

http://www.clifford.at
http://www.clifford.at/

Hard to use wrong (2/2)

Introduction GOOd exam p|e

APIs Everywhere

Some Guidelines

e Introduction (1/2)

e Introduction (2/2)

e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

char *get_current_dir_name(void);

* Bo selfdescrpiive (12 Returns a malloced string containing the absolute pathname of
e o € &9 the current working directory. (GNU extension)

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation B ad exam p I e:
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages Char *Strncpy(char *dest’ Const Char *SrC’ Slze_t n),

References

If there is no null byte among the first n bytes of src, the result
will not be null-terminated.

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 17/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)

e Introduction (2/2)

e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (2/2)
e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Be self-descriptive (1/2)

= The name should indicate what it does.

= Use names for function parameters when the language
provides them.

= The API should pass the "Telephone test".

Good example:

egrep --recursive --exclude-dir .svn Copyright .

Bad example:

char =*exclude dir _vect]] = { ".svn", NULL };
fictional _egrep function(O0, 0, 1, 0, O, NULL, NULL,
exclude_dir_vect, NULL, NULL, "Copyright", ".");

http://www.clifford.at/ - p. 18/35

http://www.clifford.at
http://www.clifford.at/

Be self-descriptive (2/2)

Introduction GOOd exam p|e

APIs Everywhere

I If (strstr(haystack, "needle"))
- It () printf("Found a needle!\n");

e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2) .
Bad example:

e Hide something

» Don' averoptimze print "Found a needle\n" if haystack =" /needle/;
e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation GOOd exam p I e.
e Document the data layout

e Stick to a freeing-paradigm

« Program defensively Int on_exit(void (*function)(int , void *), void *ar

e Support many languages

References

Bad example:

sighandler_t signal(int signum, sighandler_t handler);

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 19/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)

e Introduction (2/2)

e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Hide something

= An API must hide something.

= The inner workings of a module must not dictate the API.

Good and bad example:

void gsort(void

Int(

* compar)(const void

* const void

*base, size t nmemb, size t size,

*));

http://www.clifford.at/ - p. 20/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)

e Introduction (2/2)

e Hard to use wrong (1/2)
e Hard to use wrong (2/2)
e Be self-descriptive (1/2)
e Be self-descriptive (2/2)
e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Don’t overoptimize

= Allow for changes in the algorithm.
= This Is where optimization happens!

Common failure: Trading a 'fast AP’ for less flexibility.

Bad Example:

void gsort(void * pase, size t nmemb, size t size,
Int(*compar)(const void *, const void *));

(A user context pointer should be passed thru to compare.)

http://www.clifford.at/ - p. 21/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)
e Be self-descriptive (2/2)
e Hide something

e Don't overoptimize

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Support User Contexts

Always pass a void user context pointer to callback functions.

Global variables should never be used for this!

Always configure a library using some kind of context object.

Global variables should never be used for this!

Bad examples: gsort(), LibXML2
Good examples: epool, PCRE

http://www.clifford.at/ - p. 22/35

http://www.clifford.at
http://www.clifford.at/

Be Pragmatic

introduction = Each module/function should do one thing well.

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)

e Hard to use wrong (1/2) Bad examples
o = Using select() as nanosleep/usleep replacement. (4.2BSD)

e Be self-descriptive (2/2)
e Hide something

e Don't overoptimize

e Support User Contexts

e Be Consistent GOOd exam p I es.

Be Restrictive
: Be Selecltivl;l u BS D SOCket AP I
e Free everything

e Two-level-documentation u MOSt POS'X System Ca”S
e Document the data layout

e Stick to a freeing-paradigm

e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 23/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Be Consistent

Stick to a metaphor for APl names.
Stick to a lexical naming scheme.

Don’t mix plural and singular in names.

Always use the same name for the same thing.

Avoid off-by-one confusions.

http://www.clifford.at/ - p. 24/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Be Restrictive

Make a clear distinction between internal and external APIs.

Use accessor functions to access data structures.

Don’t export struct internals when the user should only pass

the pointer.

Everything that does not affect the APl can be changed

easily!

http://www.clifford.at/ - p. 25/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Be Selective

Limit the API to an easy to overview set of functions, if

possible.

Good example: PCRE API

Provide an easy-to-use API for the most common use case,

If feasible.

Good example: CURL API

http://www.clifford.at/ - p. 26/35

http://www.clifford.at
http://www.clifford.at/

Free everything

Inroduction = Provide done() , destroy() or cleanup() functions.

APIs Everywhere

« Iniroducion (112 = Make sure that it is possible to free every resource allocated

e Introduction (2/2) .

e Hard to use wrong (1/2) by your Ilbrary
e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e s m _Use memory debuggers like valgrind to verify your
e Support User Contexts |mp|ementat|0n .

e Be Pragmatic
e Be Consistent
e Be Restrictive
e Be Selective

e Free everything

e Two-level-documentation

e Document the data layout B ad exam p I €.

e Stick to a freeing-paradigm Th e QT Ilbrary

e Program defensively
e Support many languages

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 27/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)
e Be self-descriptive (2/2)
e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Two-level-documentation

Provide at least two levels of documentation:
0 The big picture / tutorial
O Function, Class, etc. reference

Tools like doxygen can only help with the latter one.

Always assume that the reader of your documentation starts

with zero knowlegde of your API.

Always start with describing the bigger context.

http://www.clifford.at/ - p. 28/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)
e Be self-descriptive (1/2)
e Be self-descriptive (2/2)
e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Document the data layout

m Data structures etc. are almost ever under-documented.

= But often understanding the data structures is the key

element for understanding an API.

= |In good programs the data structure tends to dictate the
Imperative part of the program, not the other way around.

Bad example:
man pages

http://www.clifford.at/ - p. 29/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm

e Program defensively
e Support many languages

References

Clifford Wolf, September 21, 2008

Stick to a freeing-paradigm

= Always be clear who is supposed to free what resource.

= Make a decision for one paradigm and stick to it.

= Freeing resources is the boring part.

= Nevertheless it's one of the most critical aspects in API
design.

(Know your contracts!)

http://www.clifford.at/ - p. 30/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)

e Be self-descriptive (2/2)

e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Program defensively

Be liberal with what you acceppit.

Be conservative with what you pass to the outside world.

Check for the impossible case.

Fail early when you have to fail.

Leave all checks in the production code.

http://www.clifford.at/ - p. 31/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

e Introduction (1/2)
e Introduction (2/2)
e Hard to use wrong (1/2)

e Hard to use wrong (2/2)

e Be self-descriptive (1/2)
e Be self-descriptive (2/2)
e Hide something

e Don't overoptimize

e Support User Contexts

e Be Pragmatic

e Be Consistent

e Be Restrictive

e Be Selective

e Free everything

e Two-level-documentation
e Document the data layout
e Stick to a freeing-paradigm
e Program defensively

e Support many languages

References

Clifford Wolf, September 21, 2008

Support many languages

Support as many programming languages as possible.

Use the swig library to export a C/C++ API to the scripting
world.

Provide command line tools to make the API's functionality
accessible from an ordinary UNIX shell.

Provide a thin C-wrapper for C++ libraries.

Use MinGW or Cygwin to create a Win32 port of your library.

http://www.clifford.at/ - p. 32/35

http://www.clifford.at
http://www.clifford.at/

Introduction

APIs Everywhere

Some Guidelines

References

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 33/35

http://www.clifford.at
http://www.clifford.at/

Inroducton = The Pragmatic Programmer
APIs Everywhere Hunt and Thomas (ISBN-13: 978-0-201-61622-4)

Some Guidelines

e This Presentation

= The Mythical Man-Month
Brooks (ISBN-13: 978-0-201-83595-3)

= The Elements of Programming Style
Kerninghan and Plauger (ISBN: 0-07-034207-5)

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 34/35

http://www.clifford.at
http://www.clifford.at/

“ This Presentation

introduction = Clifford Wolf
APIs Everywhere http [lwww.clifford.at/

Some Guidelines

:
 Books = More Presentations

:
http://www.clifford.at/papers/

= This Presentation
http://www.clifford.at/papers/2008/apidesign/

Clifford Wolf, September 21, 2008 http://www.clifford.at/ - p. 35/35

http://www.clifford.at
http://www.clifford.at/

	Introduction
	What are APIs? (1/2)
	What are APIs? (2/2)
	Why are APIs so important?
	Why is API-Design so important?

	APIs Everywhere
	Frameworks
	Standard APIs (1/2)
	Standard APIs (2/2)
	Toolchain Libraries
	Program Modules

	Some Guidelines
	Introduction (1/2)
	Introduction (2/2)
	Hard to use wrong (1/2)
	Hard to use wrong (2/2)
	Be self-descriptive (1/2)
	Be self-descriptive (2/2)
	Hide something
	Don't overoptimize
	Support User Contexts
	Be Pragmatic
	Be Consistent
	Be Restrictive
	Be Selective
	Free everything
	Two-level-documentation
	Document the data layout
	Stick to a freeing-paradigm
	Program defensively
	Support many languages

	References
	Books
	This Presentation

